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1.  INTRODUCTION 

In any large-scale meteorological situation, 
there is no more than a finite number of synoptic 
measurements available for map analyses. The 
lack of information between these reports makes 
such analyses somewhat uncertain and implies 
that forecasts based upon them will also be un- 
certain, to some extent at least. As one meteor- 
ologist [8] puts it, "A forecast of weather can 
never be more than a statement of probabilities." 

A second consequence of the inevitable data 
void between reports is that because small fea- 
tures, which may be significant for predictions, 
are smoothed out of the analyses, any evaluation 
of the number or sizes of analysis errors will 
tend to be underestimated. In other words, we 
can do no better than to minimize the errors and 
thereby maximize the estimated probabilities of 
success of large scale predictions. We conclude 
that probabilities are necessory , and maximum 
probabilities are sufficient in synoptic analysis 
and forecasting. 

The purpose of this publication is to des- 
cribe a method for obtaining such maximum or 

limiting probabilities for predictions made by 
standard quantitative techniques. The method 
has a theoretical basis, but this will not be em- 
phasized here. In application to standard fore- 
cast formulas (extrapolation, barotropic models, 
etc.), partial derivatives must be taken to arrive 
at equations needed for probability predictions. 
But when the latter equations are at hand, their 
practical use requires nothing more than alge- 
bra. 

In what follows, no consideration is given 
to errors in synoptic reports themselves, nor 
to imperfections of standard forecast techniques. 
This is another reason why the computed prob- 
abilities of success become maximized. 

In presentation of the method, it is deemed 
desirable to use frequent examples, beginning 
with the simplest. This is done in the next sec- 
tion. A summary of the method is given in chap- 
ter 3, and subsequent sections are devoted to 
discussion and other applications of the general 
procedure. References [2,3,4,5, and 6] can be 
consulted for further details. 
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2.   EXAMPLES OF METHOD 

2.1   Location of on Isobar 

Because of the absence of information be- 
tween synoptic observations, the analysis of a 
field, sea-level pressure for example, will be 
in error to some extent. Figure 2.1 shows an 
isobaric analysis from a portion of a hypotheti- 
cal pressure field. The 1010-mb. isobar is 
drawn through an arbitrary point, A , in this case. 
However, unless there happened to be a station 
at A reporting 1010 mb., the true pressure there 
probably would not be exactly this value, indi- 
cating the isobar to be misplaced. 

I015mb. 
lOIOnth. 
K-MC—l 

AX 

I005mb. 

/ 

AXIS 

Figure 2.1.  Example of Isobar Pattern. 

Ifwe define an x axis through A and perpen- 
dicular to the isobars, as in figure 2.1, the error 
in location of the 1010-mb. isobar can be repre- 
sented schematically by the interval /±x'.. Of 
course, the magnitude of Ax cannot be found from 
the analysis because continuous observations are 
not available. Butit is possible to say something 
about the probability that a specified magnitude 
of Ax will exist. 

We can regard the synoptic reports as being 
located at random relative to the true pattern 
prevailing at a given time in a given geographic 
region. (This is not the same as saying the re- 
ports are at random, geographically.) 

the isobar at point A . Now, suppose the x axis 
to be fixed relative to the true pattern, and we 
consider other locations of the 1010-mb. isobar 
along x, as would be obtained from independent 
analyses of the same basic pattern but for differ- 
ent random arrangements of synoptic reports. 
In all such arrangements, assume that the aver- 
age density of the observing networks remains 
the same. The frequency distribution of many 
such locations might be as indicated in figure 2.2. 
Here, the horizontal and vertical coordinates are 
the x axis and frequency, respectively. The un- 
known but true location of the 1010-mb. isobar 
is at x*. Areas under the curve represent prob- 
abilities; the total area is unity. Thus, the prob- 
ability that the isobar will be located within a 
specified interval, i Ax, of its true location, x* , is 
represented by an area on the graph. The shad- 
ed area is an example. 

>- o z 

O 
LlJ 

i 

4X    iX 

XI 
mum 

^\ 

X* 

Figure 2.2.  Hypotfietically True Frequency Distribution of 
Isobar Location. 

Naturally, in practice such a probability 
cannot be found because repeated random sam- 
plings of a true pattern by observation networks 
are not available. Yet, an upper limit to this 
probability can be estimated from available in- 
formation. This is accomplished by subjecting 
the synoptic analysis itself, rather than the true 
pattern, to hypothetical random samplings by 
networks and evaluating the results. Details of 
the sampling theory will not be given here, but 
the method for computing limiting probabilities 
can be described. 

The analysis based on these reports places As  before,  assume  that Ax represents the 
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error in location of an isobar along the perpen- 
dicular x axis. With numerous random sam- 
plings a large number of such errors is obtained. 
Now, assume that the mean of the squares of 
these errors is the variance: 

a'(x) = (AX)2 
(1) 

where the bar, here and hereafter, represents 
the arithmetic mean of the quantity under it. 
According to the network sampling theory. 

o2(x) = 0.056 (2) 

where 0.056 is a dimensionless constant and £ 
is an average distance between synoptic obser- 
vations. The latter can be evaluated from the 
equation. 

e2 . R/n, (3) 

where R is the area of the analysis region, and 
n is the number of synoptic reports in the region. 
The use of (3) will be descussed further in sec- 
tion 4.1. 

Theoretically, CT
2
(X) is the variance of a nor- 

mal or Gaussian frequency distribution, as illus- 
trated in figure 2.3. The coordinates are the 
same as in figure 2.2. The mean of the distri- 
bution is x, with standard deviation a. Again, 
areas under the curve represent probabilities, 
and the total area is unity. The probability that 
deviations from x will not be greater than ± Ax 
is represented by an area such as the shaded one 
in this figure. 

How are these results of use in synoptic an- 
alysis? A numerical example will illustrate. 
Suppose that a sea-level pressure analysis is 
made over an area of 6,250,000 square miles, 
approximately the area of South America. There 
are 100 synoptic pressure reports throughout 
the region. We want to know something about 
the accuracy of the analyzed pattern. 

With R = 6,250,000 square miles and n = 
100, equation (3) yields 

£2= 62,500 (miles)2. 

t = 250 miles. 

Then from (2), 

a2(x) = 3,500 (miles)2, 

or 

o(x) = 59.2 miles. 

Let Ax = 100 miles.   From the ratio 

Ax 100 
= 59.2 1.7. 

Refer to figure 2.4 which is a graph of Ax/a(x) 
versus probability, derived from tables of the 
normal distribution [1]. Enter this figure with 
1.7 and find that the ordinate value is 91 percent. 
This is the theoretical probability that at any 
point the analyzed position of an isobar lies with- 
in - 100 miles of its hypothetically true position, 
x. 

Figure 2.3. Model Frequency Distribution of Isobar Loca- 
tion. 

Now, compare figures 2.2 and 2.3 which are 
drawn to the same scale. For the same choice 
of Ax in both figures, the shaded area in figure 
2.3 is larger than the one in figure 2.2, meaning 
that the corresponding probabilities are unequal 
in the same sense. When Ax = 100 miles, the 
larger probability is 91 percent. Theoretically, 
then, the probability that the analyzed position of 
an isobar at any point lies within 100 miles of 
its actual true position, x* , is less than 91 per- 
cent. We do not know where x* is, but we do have 
a limiting-probability statement concerning its 
proximity. 

In this example, it was assumed that the 
probability under the normal curve exceeded that 
under the "true" curve (fig. 2.2), for the same 
Ax.   This is a general prediction of the network 
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o-(X)    o-(q) 

Figure 2.4.  Cumulative Probability Versus Ratios Ai/afx) and ^q/o(q). 

is probably somewhat different. sampling theory; the limiting probability should 
be at least as large as the true one. Whether 
this happens in reality can only be determined 
by tests. Several tests have been run, all suc- 
cessful so far.   Examples will be given later. 

It should be noted that the choice of Ax = 100 
miles was arbitrary. Other values are possible; 
for example, 50 miles.   Then 

Ax     50 
a(x) 59.2 

0.845, 

and the limiting probability is 60 percent, as can 
be verified from figure 2.4. 

The accurate location of an isobar may not 
be of great interest, but equations (1), (2), and 
(3), and figure 2.4 are fundamental to develop- 
ments of more interesting and advanced topics 
discussed below. 

2.2   Specification of Pressure 

Associated with errors in location of isobars 
are errors in pressure. For example, at the 
arbitrary point A in figure 2.1 there is a 1010- 
mb.  analyzed pressure, whereas the true value 

What is the relation between pressure error, 
Ap , and isobar-location error. Ax , at a given 
point?   From the calculus. 

<*■£ &x, (4) 

where dp/dx is simply the gradient of p in the x 
direction. Note that the x axis was chosen along 
the gradient. 

The true gradient of p at point A is not known, 
but it can be approximated from the analysis. 
Our procedure now is similar to that of the pre- 
ceding section; square and average errors to ob- 
tain variances.  Thus, the variance of p becomes 

In this operation, the value of dp/dx is to be re- 
garded as constant. 

As before, a2(x) is consideredtobe the var- 
iance of a normal distribution. Then because 
dp/dx is a constant, a2(p) in (5) is also the vari- 
ance of a normal distribution, according to sta- 
tistical theory.   Combinationof (2) and (5)yields 
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2(p) = 0.056 £2(^.)2 (6) 

To illustrate the practical use of (6), we 
employ the example of figure 2.1. Assume that 
the pressure gradient measured at A from the 
analysis, is 3 millibars per 100 miles, and that 
the average distance between synoptic reports 
again is 250 miles.   Then, from (6), 

*2(P)=3.I5, 

or 

0(p) = f3.15),/> = 1.77. 

Select a value of Ap  =  2 mb.    Form the ratio 

4iU = 1.13. ^pr=i.77 
Enter the graph in figure 2.4 with the value 1.13 
and find the corresponding probability, 74 per- 
cent. This means: the probability, that the analyzed 
pressure at A lies within +2 mb. of the true pressure at that 
point, is not greater than 74 percent. Under the cir- 
cumstance that synoptic reports are widely scat- 
tered, a stronger statement than this hardly 
seems possible. 

2.3   Comparison   of   Theory and   Observation  in   Pressure 
Specification 

A probability statement like the one above 
cannot be tested at a single point in an analysis. 
Observed probabilities are needed for compar- 
ison with theory. Because actual synoptic sit- 
uations do not repeat themselves, observed prob- 
abilities at a fixed point are not available and 
it is necessary to make indirect comparisons, 
one of which will be described here. 

A synoptic situation was selected at random: 
the sea-level pressure for the entire Northern 
Hemisphere, 1230 Greenwich mean time, 19 
February 1950. There were 718 available sy- 
noptic reports of pressure and many of these 
were accompanied by observed wind values. Of 
these reports, 353 were deleted on a random 
basis and the remaining 365 were plotted on a 
base map and analyzed without prior knowledge 
of the isobaric pattern. Where available, report- 
ed winds aided the analysis. Then the actual er- 
ror in pressure at each of the 353 deleted sta- 
tions was found by comparison of analyzed and 
true values. The theoretical variance, a2(p) , 
was computed at each of these locations, by use 
of (6). (The same value of f, 634 miles, appear- 
ed in all computations. This value was found 
from (3), with n  =  365 and  R  the area of the 

Northern Hemisphere.) 

Actual errors and theoretical variances 
were combined into separate frequency distribu- 
tions, but the details of this step are omitted 
here. Both distributions are shown in figure 2.5. 
The smooth curve represents a theoretical nor- 
mal distribution, while the broken curve is a 
histogram of observed errors. The important 
feature is that the theoretical curve shows less 
dispersion from the mean (set at zero) than does 
the observed curve. In other words, the observ- 
ed probability of deviations to lie within any spe- 
cified interval centered about the mean is not 
greater than the theoretical probability for the 
same interval. This conclusion supports the net- 
work sampling theory, and is typical of results 
obtained from other similar studies. 

T- r- 
-5 0 5 10 

UNITS OF STANDARD DEVIATION 
15 

Figure 2.5. Observed Frequency Distribution (histogram) 
and Theoretical Frequency Distribution (sym- 
metrical curve) of Pressure-Analysis Errors for 
Northern Hemisphere, 1230 GMT, 19 February 
1950. 

2.4   Extrapolation 

In previous sections, the primary concern 
is the probabilities of accurate synoptic analy- 
sis. Henceforth, attention will be focussed on 
probabilities of accurate predictions from anal- 
yses.   We begin with simple extrapolation. 

Figure 2.6 shows three hypothetical loca- 
tions of an isobar segment along a perpendicu- 
lar x axis. The past, present, and extrapolated 
positions are at x0, x1, and x2, respectively; with 
distances between positions being equal.   Thus, 

(7) 
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Figure 2.6.  Successive Locations of Isobar Segment Along 
x Axis. 

Because of analysis errors, the displacement 
x -x is somewhat in error, and thereby causes 
an   error   in  the   future   displacement, x2 - x,;: 

A(x2-x1) = Afi, -x0) (8) 

This can be rewritten in terms of the loca- 
tion errors themselves: 

Ax2 - Ax^ Ax, - Ax0 ,i 

Ax, = 2 Ax, ■Axr (9) 

Here, the error in predicted location, Ax^, 
is expressed in terms of analysis errors. Now 
both sides of (9) are squared and averaged to 
obtain a2(x2),\ the variance of prediction errors. 
Thus, 

a2(x2) . (Ax/ - 4 (Ax/ + (AX/ - 4 AX1AXC (10) 

We will assume that present and past synoptic 
analyses were made independently of each other, 
or else that the time interval between successive 
maps is large enough so that errors Ax0jand Ax,! 
are essentially independent of each other. This 
makes it possible to set the cross-product term 
Ax,Ax0 = 0, as the two errors are uncorrelated. 
In practice, either of these assumptions is not a 
severe restriction. And it is most important to 
eliminate Ax,Ax0 from (9), otherwise it cannot be 
evaluated. See section 4.2 for further discussion 
of this subject. 

Next. (Ax,) ! and .(AxJ | are each replaced 
with 0.056 e2!, from (1) and (2), so that (10) be- 

comes 

2(xJ = 0.056£2(4 + I) = 0.280e2 
(11) 

Now,  suppose t  =2 50  miles as before.   From 

(ID, 

a2(x2)= 17,500 (miles)2 

or 

CT(x2) = 132.29 miles. 

Select  an interval Ax2 =  100 miles.    Form the 
ratio 

Ax. 100 

a(x2) = 132.29 
- 0.76 . 

With figure 2.4, this yields 55percent prob- 
ability. In a network whose average distance between 
stations is 250 miles, the probability that an isobar extrap- 
olated by use of equation (7) will lie within i 100 miles of 
its true location is 55 percent, at best., 

Two features of this example should be no- 
ted. It has been implicitly assumed that extrap- 
olation is a perfect prediction method, because 
no method errors were considered. However, 
the italicized statement above still holds, even 
if extrapolation is a poor procedure. 

Secondly, the results are not restricted to 
isobar displacements. Thus, x2 could represent 
the extrapolated position of a front, isotherm, 
or other synoptic feature. 

2.5   Pressure Forecast Using Pressure Tendency 

The pressure at a fixed point can be fore- 
cast from the relation. 

p.-Po + M. (12) 

where itlis time; b0:the initial tendency, dp/dt; 
and p0 and pt are initial and forecast pressures, 
respectively. In figure 2.7, let A be such a point, 
and let x, and x2i axes be drawn perpendicular 
to isobars (solid curves) and isallobars (dashed 
curves) through the point, as an example. The 
forecast error, Apt , depends on analysis errors, 
Ap0  and Ab0i.   Thus, 

AP, = Ap0 + tAb0 

From (4), 

AP„ = dx, 
:\X, 

(13) 

(14) 
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and, by similar reasoning, 

Ab0^Ax2, (15) 

where db0/dx2 is the isallobaric gradient.   Sub- 
stitution of (14) and (15) into (13) yields 

(16) 

The variance of forecast errors, o2(pt), is 
found by squaring and averaging both sides of 
(16): 

Here, dp^/dx^ and db0/di2 are treated as con- 
stants to be evaluated from the synoptic analy- 
sis, and the last term is set equal to zero be- 
cause analysis errors of isobars and isallobars 
are mutually independent (&x1d,x2 = 0). 

For a numerical example of (17), let ? = 
250miles, dp^dx, = 3 mb./lOOmiles, and dbjdx2 

= 1 mb./3 hr. per 100 miles. Then, as in equa- 
tion (11), 

CT2(pt) = 0.35 (9 + 0.11 t2), 
(18) 

^(P.MAP.)2^!^ 

dPo db. 
(17) 

+ 2td^Ax.AX
2 

where t   is measured in hours. 

Let Apt = 2 mb. By use of (18) and figure 
2.4, limiting probabilities, P , for p can be 
found, as in previous sections. Results for var- 
ious valuesof t are given in table 2.1. (The last 
column shows values of pt predicted from (12), 
with assumed initial values, P0 = 1012 mb. and 
b0 = +2 mb./3 hr., at point A. ) Limiting prob- 
abilities of successful prediction of pressure 
within - 2 mb,, decrease with increasing fore- 
cast periods, which is consistent with experi- 
ence. 

Table 2.1. Predicted Pressures (pt) and Limiting Probabil- 
ities (P) for Pressures to Be Within 2 mb. of True 
Values at Various Times (t). 

Figure 2.7.  Example of Isobar (solid lines) and Isallobar 
(dashed lines) Patterns. 

t 

(hour) 

2 
o(pt) 

P 

(percent) 

P, 

(mb.) 

0 1.128 74 1012 

6 0.936 65 1016 

12 0.676 50 1020 

18 0.504 39 1024 

24 0.396 31 1028 
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3.   SUMMARY OF METHOD 

With the examples of the previous section 
as an introduction, we can outline the method for 
obtaining limiting probabilities quite generally 
and formally. Some comments about the exam- 
ple in section 2.5 are appended to illustrate each 
step: 

1. Select variable, q, to be studied. 

2. Express this variable as a function of 
other variables. 

2.   Accordingto(12), p,   is a function of p0, 
b0, and t : 

P, = P,fPo. bo. ')■ (19) 

From the calculus and (19), the total dif- 
ferential is written 

*, ^P. 
Ap.= ap;Apo + ^F;Abo + St 

At . (20) 

3. Obtain total differential of the variable 
in terms of other variables. 

4. Simplify total differential by omitting 
from it any difference terms not due to 
synoptic analysis errors. 

5. Repeat steps 2, 3, and 4 for each of the 
other variables in the total differential. 
Continue the repetition for all new var- 
iables introduced during the process, as 
far as possible. 

6. Substitute all total differentials obtained 
in step 5 into first total differential. This 
gives the basic error equation. 

7. Square and average both sides of the bas- 
ic error equation. This gives the variance 
equation. 

8. Set equal to zero the cross-product 
terms that are averages of products of 
uncorrelated errors. 

The partial derivatives in (20)  can be 
found by differentiation of (12).   Thus, 

9.   Replace each (AXj)2 with 0.056  E2,. 

10. Evaluate i2 from R/n, and partial deriv- 
atives from ratios of finite differences, 
using data from synoptic analyses. 

11. Use computed value of trffj) and specified 
value of Aq to find limiting probability 
from figure 2.4. 

Comments: 

1.   In the example of section 2.5, we let (j = pt. 

ap,   .  *»      apt 

If'1' sb0
=t' at =D° 

(21) 

When (21) is  substituted into (20), the 
latter becomes 

Apt = Apo+tAb0lb0At . (22) 

4. The last term in (22) can be omitted be- 
cause there is no error in t introduced 
by synoptic analysis; the forecast period 
can be specified accurately, indepen- 
dently of any analysis. Therefore. At = 
0 and (22) reduces to (13). 

5. The other variables in (13) are p0 and 
b0. Their total differentials are given 
simply by (14) and (15). The new vari- 
ables introduced by (14) and (15) are Xj 
and x2 . But, the latter are independent 
variables, so the repetition of steps 2, 3, 
and 4 terminates here. 

6. This step results in (16). 

7. This gives (17). 

dp0db0  
8. The term,   2t-T—-3—Ax^x,,,   is dropped 

from (17). '     2 

9 and 10.   These steps lead to (18). 

11.   See table 2.1. 
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4.  DISCUSSION 

4.1   Evaluation of i 

According to (3), the square of the average 
distance between synoptic reports is 

I2 = R/n , 

where R is the geographic area over which the 
analysis is made, and n is the number of reports 
in that area. In all studies to date, it has been 
satisfactory to compute I in this way. For ex- 
ample, the successful results described in sec- 
tion 2.3 were obtained by letting R be the total 
area of the Northern Hemisphere and n the num- 
ber of   hemisphere  stations used   in analysis. 

A special problem arises when analyses are 
made over oceans where data tend to be sparse. 
If data are too sparse, no reliable analyses can 
be made. If there are some data permitting an- 
alyses of large-scale features, at least, then R 
should be made the ocean area although it is a 
small number. However, if the weather systems 
to be analyzed have emerged from a nearby land 
area having a dense observation network, so re- 
cently that by continuity the analyst still has a 
good concept of their features, then it is suitable 
for computation purposes to use a value of £ 
characteristic of the dense land network. It is 
important here to realize that the chief goal is 
a limiting or maximized probability value, and 
that this is not unique in a given problem. This 
is because all probabilities, from unity down to 
computed limiting value, are themselves limit- 
ing probabilities. Of course, it is desirable to 
obtain a value as close to a lower "true" prob- 
ability as possible. But at least it can be ensured 
that a probability will be a limiting one if £ is 
made sufficiently small. Network densities on 
land are suitable for this purpose. 

guarantee independence of errors. An apparent- 
ly safe guide in practice is that the map interval, 
T, satisfies the inequality 

2£/c (23) 

where c is the maximum apparent speed that 
synoptic features (isobars, fronts, etc.) are ob- 
served to move. Six hourly and twelve hourly 
maps satisfy this criterion in dense networks, 
particularly on land. 

The problem of cross-product terms also 
is present when evaluating errors of gradients. 
For example, suppose it is desired to study er- 
rors of the east-west component of the geo- 
strophic wind, u, on a constant pressure surface. 
Now, 

-ff' (24) 

where g is the acceleration of gravity, ^ the 
Coriolis parameter, and dZlSy is the north-south 
height gradient of the constant pressure surface. 
In practice, the gradient would be computed as 
a ratio of finite differences: 

ay 
z.-z, 

(25) 

where L is a selected distance along the y axis 
centered at the point where u is to be found, and 
Z, and Z2 are heights interpolated from the con- 
tour analysis at end points of L. Then (24) be- 
comes 

8(Z, 

f 
(26) 

Following the general method in chapter 3, we 
regard u as a function of g, f, Z,, Za, and L and 
write its total differential as 

4.2   Treatment of Cross-Product Terms 

This subject arose earlier. In section 2.5, 
the errors of isobaric and isallobaric analyses 
were regarded as independent of each other, 
which is a reasonable assumption, so that the 
term containing AXJAXJ in (17) could be set 
equal to zero. 

In the extrapolation example of section 2.4, 
the justification for dropping Ai1Ax0 from (10) 
is that the analyses at different map times are 
made independently of each other or that the in- 
terval between these maps  is large enough to 

... (fa    . „ tto    »f AZ, ■5Z,AZ2+5LAL 

(27) 

The underlined terms become zero because g 
is a known constant, L is predetermined exactly, 
and f depends on latitude and is assumed con- 
stant. By partial differentiation of (26), (27) re- 
duces to 

Au --■ 
8AZS 

f   L 

gAZ, 
7   L 

g(AZs 

7 
AZ,) 

(29) 

The total differentials of Z.  and Z. 

dZ. 
AZ. = *r l±x. 
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and 

AZ. Ax, (29) 

where axes x, and x2 are defined to be along the 
height gradients at the points where Z, and Z 
are interpolated from the analysis.   By combi- 
nation of (28) and (29), we have 

Au = -5. iJZ az, 
fLl5x ^AX.-'^AI.) (30) 

The variance of u is obtained by squaring and 
averaging (30): 

a2(u) = (Au)   -(jf-J   [^(Ax/^^fAX,)' 

az, az2 
-2 ax 

i "^ 2 n 
- ^ AX.AxJ (31) 

The last term is a cross product that can be set 
equal to zero if Ax, and Ax2 are uncorrelated. 
The latter condition will be met if the distance 
chosen for L is sufficiently large, according to 
the inequality 

L£e. (32) 

This is not a severe restrictioninpractice.  Then 
with the aid of (1) and (2), (31) becomes 

orW-0.056 £'(£)   [(^)   +^)J.        (33) 

which can be evaluated with the aid of (3). 

As a final instance wherein cross products 
appear but can be eliminated, consider the prob- 
lem of errors in determination of thickness be- 
tween two isobaric surfaces. Let h bethethick- 
ness between the 700-mb. and 1000-mb. surfaces 
at a given geographic location, so that 

h = Z (34) 

where Z and z are the heights of the upper and 
lower surface, respectively. By standard pro- 
cedure. 

dZ Sz 
Ah = AZ-Az=^-Ax1-^-Ax2 (35) 

where the x,   and x2  axes lie along the height 
gradients at 700 and 1000 mb.   Then, 

-2(h) = fAh)2=(f-)2(Ax,)2 + (f-)
2(Ax2)2 

(36) 

Now, if the contour analyseaiave been made in- 
dependently we can set  Ax,Ax2 = 0, particularly 

when h is large enough (as in this case) to be of 
practical value or interest. The variance equa- 
tion becomes 

ffW = 0.056 ^[(f-)2
+(^)2] (37) 

after the cross product term is dropped. 

4.3  Presentation of Results 

Each of the previous examples is concerned 
with a single probability value at an initial or 
forecast time. Depending on the meteorological 
variable, it may be possible to obtain a field of 
predicted probabilities associated with the field 
of the predicted variable. Thus, suppose the 
height, Z , of the 500-mb. surface is to be fore- 
cast at numerous grid points by a standard meth- 
od. Then, at each point the forecast variance 
<'2(Z) can be obtained and used to find a limiting 
probability there. The grid field then can be an- 
alayzed with isolines of probability. 

Figures 4.1 to 4.3 provide an example. The 
first figure shows the analyzed height field at 
500 mb., 0000 Greenwich mean time, 8 January 
1963. By means of a barotropic model which 
conserves absolute vorticity, a numerical 24- 
hour forecast was made from this initial state, 
and is shown in figure 4.2, Then, the method of 
chapter 3 was applied to the barotropic-model 
equation and the synoptic features of figure 4.1 
to yield numerical predictions of cr2(Z) at grid 
points throughout the North American region. 
Corresponding, limiting probabilities were plot- 
ted and analyzed in figure 4.3. The value of each 
isopleth is the limiting probability for predicted 
height values to lie within - 100 feet of true 
values at 0000 Greenwich mean time, 9 January 
1963. The map shows areas where forecasts 
have good and poor likelihoods of success. 

At this point the reader may have the follow- 
ing question in mind. Suppose two analysts in- 
dependently drew separate contour fields for the 
synoptic situation of January 8. Their analyses 
would be slightly different, consequently their 
analyzed probability fields for January 9 would 
differ from each other to some extent. Would 
both fields still give valid limiting probabilities? 

From tests so far and from deliberate intent 
in development of the method, the answer is yes. 
Synoptic analyses are gross smoothings of re- 
ality that presumably resemble each other more 
closelythanany one of them would resemble the 
true situation in all its complexity. 
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Figure 4.1. Initial Height Field (100's of ft.) at 500 mb., 0000 GMT, 8 January 1963. 

Figure 4.2.  Forecast Height FieldflOO's of ft.) at 500 mb., 0000 GMT, 9 January 1963. 
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Figure 4.3.  Forecast Probability Field (percent) at 500 mb., 0000 GMT, 9 January 1963. 

4.4  Verifications 

A comparison between observed and theo- 
retical probabilities was given earlier in figure 
2.5. Another type of comparison which has a 
simple interpretation, will be described in this 
section. 

Suppose that forecast and verification height 
fields at the 500-mb. level, at a specified time, 
are to be compared with each other. At each of 
N points, the error in the forecast height can be 
computed. A frequency distribution of the N 
errors will then reveal what fraction fell with- 
in * 100 feet of verification values, for example. 

Next, the forecast variance, "HZ),, at each 
of the N points can be used to find the limiting 
probability, Pi , for the predicted height to fall 
within i 100 feet of the true height. Then one 
can determine the average (expected) probabil- 
ity,  P   for this result at the N points, from 

Figure 4.4 shows an actual comparison be- 
tween theoretical probabilities (T) and observed 
relative frequencies (0) for various error in- 
tervals (AZ). This is a verification graph for 
10 synoptic cases in which Z was predicted by 
the numerical barotropic model mentioned in 
the last section.   For each value of AZ, N   =1,645 

1 
?■#(?..?,. PJ (38) 

400 
UZI  (FEET) 

600 800 

If N| is large (greater than 100), and P equals 
or exceeds the observed fraction of errors, this 
may be accepted as support for the theoretical 
probability. 

Figure 4.4. Obseryed(O) and Theoretical (T) Limiting Prob- 
abilities for Forecast Heights to Be Within In- 
terval &Z of True Heights at 500 mb., Based on 
1645 Numerical Forecasts in 10 Synoptic Situa- 
tions. 
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pairs of values were used. It is apparent that 
the theoretical probabilities are truly limiting 
values because they bound the observed values 
from above. 

Parenthetically,   it may be noted that the 
predicted variances, CT

2
(Z), can also be used to 

determine limiting  probabilities   of  predicted 
geostrophic wind components.   Thus, for the   u 
component,   the   variance  a2(u)   results    from 

squaring and averaging (28), to give 

-(J^jWz,)^,)].       (39) 

from which the cross product term has been suit- 
ably eliminated. Graphs similar to that of figure 
4.4 have been computed for u and v components, 
and with similar success. 
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5.  APPLICATION TO EXTRAPOLATION FORMULAS 

Given below are five equations for extrapo- 
lating synoptic features, and corresponding vari- 
ance equations for predicted displacements. 
Each method refers to figure 5,1 which shows 
three consecutive past positions and the extrap- 
olated position of an isoline ( A, B, C, and X, 
respectively along an x axis. It is not necessary 
that this axis be straight, as shown, but it should 
be perpendicular to the isoline at all four inter- 
section points. 

Figure 5.1.  SuccessiveLocationsof Synoptic Feature Along 
x Axis. 

5.1   Constant Speed 

where 

x = C + ft  , 

C-B 

(40) 

(41) 

is the measured speed from B to C in map in- 
terval r , and t is time.   Then 

^(x.^O.OSeE2^-^ +2(i)2] (42) 

is the variance equation for x   . 

5.2   Variable Speed 

x2 = C + ft+jat2 

where v is given by (41), and 

^(C-B    B-A, 

(43) 

(44) 

B-A and C-B , and there is the same time inter- 
val, r , between successive maps. The variance 
equation takes the form 

<72fx2) = 0.056£2[l+^+3^)2 + 3(i)3 

+ I-5^4]   . (45) 

5.3   Percentual Change Method for t = r 

X3-C = (C-B)2/(B-A)  . (46) 

<72(x3) = 0.056 H2 (1 + 4fe + 8fe2 + 4fe3 + 2k4)  ,      (47) 

where 

fe.(C-B)/fB-A) , (48) 

here and hereafter. 

5.4 Percentual Change Method for t - 2r 

x4-x3 = (x3-C)2/(C-B) ; (49) 

a2(x4) = 0.056f2(I + 8fe + 32fe2 + 56fe3 

+ 52fe4 +24fe5 + 8k6)  . (50) 

5.5 Wasko's Method 

x5-C = C-B+-S^A[(C-B)-fB-A)]  ,    (51) 

under the condition that    C - B S B - A. 

+ 5ie4) . 

4fe3 

(52) 

is the measured acceleration involving distances 

References [5, 7, and 9] can be consulted 
for discussions of equations (40) through (52). 
The reader may find it useful practice to verify 
the variance equations by the procedure of chap- 
ter 3. 

For practical purposes, the variance equa- 
tions have been graphed: (42) and (45) in figure 
5.2;(47),(50),and(52)infigure 5.3. Each figure 
is entered along the horizontal axis to find a val- 
ue of the ratio B(X)/£ on the vertical axis. Then, 
with a value of I from  (3),   o(x)  can be found. 

For an example, consider the extrapolation 
case in section 2.4. Actually, this is a special 
case of method 5.1 when t = r . Therefore, enter 
figure 5.2 at the point (t/r) = 1 and find from 
curve  x,   that   (ajl) =  0.53.   Let   I = 250 miles. 
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then a = 132.5 miles, which is close to the value 
132.29 miles, found in section 2.4. 100 

70 

-i \ 1 1     r -i—i—i—r 

0.5 

Figure 5.2.  Values of a/t for Predicted Displacements x, 
and x   as Functions of t/r. 

1.0 1.5 2.0        2.5 
(C-B) / (B-A) 

3.0 

Figure 5.3. Values of a/t for Predicted Displacements x3, 
x 4, and x5 (dashed line) as Functions of (C-B)/ 
(B-A). 
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